

Separation in the U-space Concept of Operations

An overview for Drone Enable 3

Andrew Hately CORUS technical coordinator 13th November 2019

CORUS very briefly

- CORUS is:
- SESAR2020 Exploratory Research project
- Developing a Concept of Operations for U-space
- Stakeholder consultation is central to CORUS:
- 9 consortium members
- 21 member advisory board
- 70+ cooperating organisations in
 - 8 "sibling" projects simultaneously explore technology questions
 - 10 related demonstration projects
- 600+ member U-space Community Network

- Over two years CORUS has
- Run three large workshops

Iteratively developed a ConOps

https://www.eurocontrol.int/project/conceptoperations-european-utm-systems

CORUS & U-space

- U-space is initially concerned by VLL
 - = below VFR, but including CTR
- U-space can be thought of as serving small drones
 - In fact it serves anything flying in the volume
- U-space is defined as a set of services
- The U-space principles are
 - Safety first
 Open market
 - Social acceptance Equitable access
 - ECAC wide
- CORUS aims to create a robust ConOps
 - allowing a high level of traffic
- CORUS main concern is traffic management
- CORUS makes few assumptions about technology

ORU

- Focus on VLL
- All of VLL is divided into: X, Y or Z volumes
 - X = low risk

- Y = medium risk & density
- Z = highest density
 - Za = ATC controlled airspace
 - Zu under U-space

Airspace and Conflict Resolution

- X:
 - No conflict resolution
 - Pilot remains responsible to remain well clear
 - enables VLOS
- Y:
 - Approved flight plan required
 - Strategic Conflict Resolution
 - = before take off
 - Flights which conform to their plans have an acceptably low * probability of encountering each other
 - Unless previously agreed e.g. VLOS
 - * = acceptable to the regulator

- Z:
 - Conflict resolution
 - Strategic = before flight
 - and Tactical = in flight
 - Za
 - ATC controlled airspace, e.g CTR
 - U-space provides
 - Situational awareness to ATC
 - Communication tools
 - Standard ways of working
 - Zu
 - U-space (software) provides conflict resolution during flight, from the ground

Drones in the Za volume

- The ATCO remains in charge
 - The aim is to make the drones controllable
 - U-space provides supporting services
- The separation is as other aircraft
 - The drone is lighter, smaller and slower
 - The ATCO determines the spacing
 - Wake vortex and microweather will be significant
- U-space planning
 - Flights into Za are planned in U-space
 - The U-space flight plan is used to coordinate Za entry and operation
 - The plan can be used tactically by the ATCO

U-space surveillance

- U-space tracking may be based on technology not used by manned aviation
- U-space tracks can be supplied to ATC

Tracker to Tracker

- To be shown on the normal ATC displays
- U-space Communications
 - We do not require drone pilots to be familiar with R/T phraseology
 - We do not expect drone operators to have VHF radios
 - U-space can provide CPDLC-like communications between ATCO & Pilot
 - U-space should convert heights and headings to the appropriate systems

PICTURE: By Bruno Dantas - Self-photographed, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1554258

The Zu volume and bubbles

- Tactical conflict resolution by computer
- Pair-wise separation minima
- Each aircraft is surrounded by a bubble
- The minimum safe distance prevents to bubbles touching

- This idea has been discussed by several
- CORUS partner DLR looked at the idea in some detail in "Concept for Urban Airspace Integration DLR U-Space Blueprint

https://www.dlr.de/fl/en/Portaldata/14/Resources/dokumente/veroeffentlichungen/Concept_for_Urban_Airspace_Integration.pdf

The CORUS project has received funding from the SESAR Joint Undertaking under grant agreement 763551 of the European Union's Horizon 2020 research and innovation programme.

The Zu volume and bubbles

- The size of the bubble for one aircraft in any volume at any moment considers two sets of factors
 - CNS performance
 - Risk: How 'serious' a collision with this vehicle would be.

- CNS:
 - The navigational performance of the aircraft
 - External factors such as current weather conditions
 - The performance of the communication between U-space and pilots
 - The performance of the surveillance function
- Risk related to the aircraft
 - The size and weight of the aircraft
 - The instantaneous velocity of the aircraft
 - Presence of hazardous cargo or passengers
- Risk related to the location
 - What is on the ground being overflown

Diagram extracted from Fig 3 of DLR's "Concept for Urban Airspace Integration DLR U-Space Blueprint

Zu: The U-space Tactical conflict resolution dilemma

If the tactical separation messages from U-space are instructions, then

- The U-space Service Provider (USSP) is providing a separation service.
- Zu is controlled Airspace (e.g. class B ?)
- The USSP needs
 - Software & hardware certified to the highest standard
 - Insurance commensurate with the liability
- Both communications between USSP and pilot and also the position reporting of the aircraft towards U-space need to be
 - Low latency
 - Safety-of-life reliable

If the tactical separation messages from U-space are advisory, then

- Zu is uncontrolled Airspace (e.g. class G ?)
- Responsibility rests with the Pilot
- Spacing may be rather cautious and traffic density relatively low
- There may be a dependence on detect and avoid
- Communications reliability & speed has safety implications.

Pairwise Strategic (pre-flight) conflict resolution with Bubbles

- Conflict Detection is done
 - by the Operation Plan Processing service
 - on receipt of an Operation Plan
- A probabilistic 4D trajectory is extracted from the operation plan
- This is then compared with all others
- When the probability of a bubble intersection exceeds some predefined value
- Then a conflict is declared
- Conflict resolution can be
 - Imposed by the conflict resolution system
 - Or Collaborative
 - operator conflict resolution system
 - operator operator

EUROCONTRO

The timing of Strategic (pre-flight) conflict resolution

- Operations can have static priority
 - E.g. Life-saving operation
- Operations can also have temporary priority
 - Determined by Equity considerations
- Operation plans may be filed at any time.
 - Inspection operations can be planned in advance
 - Food delivery is often rapid turnaround.
- Fair treatment of different business not compatible with "first to file reserves the airspace"
- Pre-flight conflicts can appear at any moment before flight.

- Conflict resolution can either be
 - Continuous
 - Delayed until some reasonable time to act RTTA
- Plans arriving after RTTA have temporary low priority
- Conflict resolution all at RTTA can be optimised.
 - The picture is effectively complete
- Optimised conflict resolution at RTTA requires 'control' of the deconfliction by the conflict resolution engine
 - The inputs (plans) should not change

Conclusions & Open issues

- Tactical separation from the ground is possible based on planning and surveillance.
 - Surveillance is likely to be dependent
 - Comms reliability and latency become crucial
- Separation depends on risk
- Strategic separation is possible based on flight planning.
- The separation between flights will depend on
 - The acceptable level of risk
 - The accuracy of the information available
 - The level of confidence in the flights conforming to their plans

Work is needed:

- Tactical separation
 - Surveillance methods
 - Communications
 - The CPDLC-like service for Za
 - Responsibility & Liability
 - Is Zu controlled aisrpace
 - Implications for manned aviation
- Strategic separation processes:
 - Processes between USSP, scaling conflict resolution
 - Priorities
 - Timing when to deconflict
 - Fairness & acceptability
 - Legal underpinnings does the USSP have the right to refuse a flight plan?

